Learning Hidden Markov Models Using Nonnegative Matrix Factorization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hidden Markov Models as Priors for Regularized Nonnegative Matrix Factorization in Single-Channel Source Separation

We propose a new method to incorporate rich statistical priors, modeling temporal gain sequences in the solutions of nonnegative matrix factorization (NMF). The proposed method can be used for single-channel source separation (SCSS) applications. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vector...

متن کامل

Two-step Nonnegative Matrix Factorization Algorithm for the Approximate Realization of Hidden Markov Models

We propose a two-step algorithm for the construction of a Hidden Markov Model (HMM) of assigned size, i.e. cardinality of the state space of the underlying Markov chain, whose n-dimensional distribution is closest in divergence to a given distribution. The algorithm is based on the factorization of a pseudo Hankel matrix, defined in terms of the given distribution, into the product of a tall an...

متن کامل

Speech Enhancement Using Nonnegative MatrixFactorization and Hidden Markov Models

Reducing interference noise in a noisy speech recording has been a challenging task for many years yet has a variety of applications, for example, in handsfree mobile communications, in speech recognition, and in hearing aids. Traditional single-channel noise reduction schemes, such as Wiener filtering, do not work satisfactorily in the presence of non-stationary background noise. Alternatively...

متن کامل

Nonnegative Matrix Factorization with Transform Learning

Traditional NMF-based signal decomposition relies on the factorization of spectral data which is typically computed by means of the short-time Fourier transform. In this paper we propose to relax the choice of a pre-fixed transform and learn a short-time unitary transform together with the factorization, using a novel block-descent algorithm. This improves the fit between the processed data and...

متن کامل

Local Learning Regularized Nonnegative Matrix Factorization

Nonnegative Matrix Factorization (NMF) has been widely used in machine learning and data mining. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a local learning regularized nonnegative matrix factorization (LLNMF) for clustering. It imposes an additional constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2011

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2011.2132490